Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters

Database
Language
Document Type
Year range
1.
ACS Chem Biol ; 18(5): 1200-1207, 2023 05 19.
Article in English | MEDLINE | ID: covidwho-2312536

ABSTRACT

Viral macrodomains, which can bind to and/or hydrolyze adenine diphosphate ribose (ADP-ribose or ADPr) from proteins, have been suggested to counteract host immune response and be viable targets for the development of antiviral drugs. Therefore, developing high-throughput screening (HTS) techniques for macrodomain inhibitors is of great interest. Herein, using a novel tracer TAMRA-ADPr, an ADP-ribose compound conjugated with tetramethylrhodamine, we developed a robust fluorescence polarization assay for various viral and human macrodomains including SARS-CoV-2 Macro1, VEEV Macro, CHIKV Macro, human MacroD1, MacroD2, and PARP9 Macro2. Using this assay, we validated Z8539 (IC50 6.4 µM) and GS441524 (IC50 15.2 µM), two literature-reported small-molecule inhibitors of SARS-CoV-2 Macro1. Our data suggest that GS441524 is highly selective for SARS-CoV-2 Macro1 over other human and viral macrodomains. Furthermore, using this assay, we identified pNP-ADPr (ADP-ribosylated p-nitrophenol, IC50 370 nM) and TFMU-ADPr (ADP-ribosylated trifluoromethyl umbelliferone, IC50 590 nM) as the most potent SARS-CoV-2 Macro1 binders reported to date. An X-ray crystal structure of SARS-CoV-2 Macro1 in complex with TFMU-ADPr revealed how the TFMU moiety contributes to the binding affinity. Our data demonstrate that this fluorescence polarization assay is a useful addition to the HTS methods for the identification of macrodomain inhibitors.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Adenosine Diphosphate , Adenosine Diphosphate Ribose/metabolism , Fluorescence Polarization , SARS-CoV-2/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL